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Entropy Augmentation & Perpetual Equivocation  
In this paper, we firstly introduce the concept of Entropy Augmentation and then propose a new information-
theoretic multi-purpose encryption scheme which uses the concept in a practical manner, namely Perpetual 
Equivocation.  By expanding on Shannon’s treatment of equivocation as a valid secrecy index for information-
theoretic security, specifically “ideal secrecy”, we demonstrate that the addition of entropy to a cryptosystem 
at a faster rate than it is consumed in the encryption process, allows for the augmentation of the equivocation 
of key HE(K) and message HE(M), such that they never attain unity, thereby guaranteeing information theoretic 
security using a finite length key, irrespective of the length of the message M. We also demonstrate that it is 
possible to exceed “perfect secrecy” with a finite length key, irrespective of the length of the message. 

In short, we demonstrate a practical means of overcoming the problems which have prevented one-time pads 
from being used in practice. 

Index Terms – perfect secrecy; ideal secrecy; secret key; perpetual encryption 

Dedication: This paper is dedicated to Toni Figueira (R.I.P.). 
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1. INTRODUCTION	
The Perpetual Equivocation concept and its practical implementation, the Incrypteon Encryption Cipher, is presented 
in this paper.  

This paper is firmly grounded in the principles of information theoretic secrecy and equivocation as defined by Claude 
Shannon in his seminal 1949 paper “Communication Theory of Secrecy Systems”. For the sake of brevity and in 
keeping with Shannon’s definitions and proofs, readers are requested to familiarise themselves intimately with 
Shannon’s paper, specifically with the basic concepts of information theory such as redundancy, and the definitions of 
“perfect secrecy”, “ideal secrecy” and equivocation. 

From a security definition perspective, we will therefore be strictly limited to the principles of information theoretic 
security such that “perfect secrecy” is attained when the a priori  message probabilities are equal to the a posteriori 
message probabilities (and thus the equivocation of key HE(K) is exactly equal to the equivocation of message HE(M) , 
namely HE(K) == HE(M)), and “ideal secrecy” is attained when the equivocation of message or key is not equal to unity, 
such that HE(M) ≠ 0 or HE(K) ≠ 0. In other words, “perfect secrecy” is attained when an assailant cannot reduce the 
probable set of all possible messages before encryption irrespective of the amount of cryptanalysis on the intercepted 
ciphertext, and “ideal secrecy” is attained when the assailant cannot reduce that probable set of all possible messages 
before encryption to a single unique message. 

Considering the advent of the QC/AI (quantum computing / artificial intelligence) security threat, we assume an 
assailant with unbounded time, computational and cryptanalytic capabilities. The Perpetual Equivocation method and 
the Incrypteon cipher therefore mark a return to the fundamental principles of information theoretic security as a 
means of addressing such a threat, which cannot be properly addressed using notions of security which rely on 
assumptions of mathematical complexity. 

1.1. Importance	of	Results	
The research in this paper has several important theoretical and practical implications. 

1. Current academic treatments of “perfect secrecy” use the one-time pad as an example and hold that 
although it is the best security that can be attained theoretically, it is practically impossible. We show that 
“perfect secrecy” is a glass ceiling, and only represents the best that can be attained within the very limited 
scope of a pure cipher using a static key and message. We therefore open up an entirely new field of 
information theoretic security - entropy augmentation cryptography – Perpetual Equivocation. Technically, 
we demonstrate that “ideal secrecy” is not inferior to “perfect secrecy”, indeed it can be superior from a 
security perspective. 

2. Message expansion has for some time now been avoided in cryptographic design, due to the obviously 
inefficient problem of additional message transmission cost. Unfortunately, this practice stems from a time 
when digital transmission was at a premium and has resulted in cryptographic development ignoring the 
powerful security benefits of random string message expansion. Random string message expansion provides 
a novel means of reducing message redundancy and allows for the simultaneous delivery of keys or 
additional entropy and messages. One-time pads can thus be distributed just in-time, on-demand, and need 
not be stored or excessively long. There’s always a key transmission penalty to be paid for information-
theoretic security, but an increase in message length by at most 100% is no longer unaffordable. 

3. We demonstrate an exception to Shannon’s rules that “perfect secrecy” requires a key as long as the 
message and demonstrate that “perfect secrecy” is a balancing act, and can be exceeded using a finite length 
key, irrespective of the length of the message. Technically, we use a finite key to encrypt an infinite key, 
which can then be used to encrypt any infinite number of messages.  
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4. We propose a simple example of a viable Incrypteon cipher which uses the principle of Perpetual 
Equivocation. 

In section 2 of this paper, we extend Shannon’s treatment of equivocation, or conditional entropy, beyond static key 
and message systems and demonstrate Perpetual Equivocation, or perpetual equivocation augmentation using 
entropy augmentation. We also challenge several information theoretic security notions and highlight some 
exceptions to various information theoretic principles. Section 3 describes the Incrypteon cipher from a conceptual 
perspective. Section 4 concludes the paper. 
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2. INFORMATION	THEORY	AND	EQUIVOCATION	
With his 1949 “Communication Theory of Secrecy Systems” paper, Shannon mathematically defined what it means to 
be information theoretically secure. He therefore defined “perfect secrecy”, “ideal secrecy” and explained the use of 
equivocation as a theoretical secrecy index. 

2.1. Basic	Encryption	
In the case of a basic cryptosystem, encryption may be defined as the transformation E of a message M by one party 
using a key K into a ciphertext C such that C=EK(M), and which is sent to the other party. The other party then uses the 
same key (symmetric encryption) or a mathematical inverse of the key (asymmetric encryption) to apply a decryption 
operation D to transform the ciphertext back to the message such that M= DK(C).  

2.2. Information	Theory	Basics	
For the purposes of brevity, this section on information theory basics has been moved to Appendix A at the end of this 
paper. The appendix describes and defines various information theory elements which including information, entropy, 
redundancy, probability etc. In the event of any discrepancy, Shannon’s definitions will take precedence.  

2.3. Perfect	Secrecy	
2.3.1. Perfect	Secrecy	Definition	

Shannon’s Definition of Perfect Secrecy is as follows: 

Definition 1. (Perfect Secrecy) “Let us suppose that the possible messages are finite in number M1,…, Mn and 
have a priori probabilities P(M1), …, P(Mn), and that these are enciphered into the possible cryptograms E1,…, 
Em by E = TiM. The cryptanalyst intercepts a particular E and can then calculate, in principle at least, the a 
posteriori probabilities for the various messages, PE (M). It is natural to define perfect secrecy by the condition 
that, for all E the a posteriori probabilities are equal to the a priori probabilities independently of the values 
of these.” (Shannon’s Definition) 

In plain English - A security characteristic of a cryptosystem, where irrespective of the amount of cryptanalysis effort 
applied by an assailant on an intercepted ciphertext, all possible messages which may have possibly been encrypted 
into the ciphertext using a secret key and an encryption transformation, appear as possible deciphered messages of 
that ciphertext. 

2.3.2. Bayes’	Theorem	
Shannon’s definition and proof of perfect secrecy is derived from Bayes’ Theorem for conditional probability which is 
calculated with the following formula: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵) 	 

In which: 

A and B  = two separate events A and B,  
P(A)   = independent probability of event A, 
P(B)   = independent probability of event B, 
P(A|B) or PB(A) = a conditional probability, namely the probability of observing event A given that B is true.  
P(B|A) or PA(B) = the probability of observing event B given that A is true.  

 

Bayes theorem allows for the calculation of the conditional probability of event A, given the probability of event B. 
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2.3.3. Shannon’s	Perfect	Secrecy	Equation	
Shannon’s interpretation of Bayes’ Theorem in the cryptographic context of message M and cryptogram E therefore 
leads to the “perfect secrecy” equality equation: 

𝑃(𝑀|𝐸) =
𝑃(𝐸|𝑀) ∗ 𝑃(𝑀)

𝑃(𝐸)  

where: 

P(M)    = the a priori probability of message M. 
P(E)    = probability of obtaining cryptogram E from any cause. 
P(E|M) or PM(E) = a conditional probability, namely the probability of observing cryptogram E if 

message M is chosen – namely the sum of the probabilities of all keys which 
produce cryptogram E from message M. 

P(M|E) or PE(M) = the a posteriori probability of message M if cryptogram E is intercepted.  
 

“Perfect secrecy” requires P(M|E) = P(M) for all E and M. P(M) = 0 is excluded since equality is independent of the 
values of P(M). Likewise, if P(E|M) = P(E), then P(M|E) = P(M). Any inequality in P(M|E) = P(M), will render the perfect 
secrecy condition invalid. It is essentially a perfectly balanced condition. 

Inequality not only occurs in the XXX usual case where P(M|E) < P(M) when the a priori message probabilities have 
been reduced through cryptanalysis, but also includes the special exception case where P(M|E) > P(M). In defining 
pure ciphers, Shannon demonstrated that with pure ciphers, P(M|E) is independent of the key chosen, with all keys 
being equally likely. 

2.3.4. Exploring	the	Boundaries	of	Perfect	Secrecy	
The “perfect secrecy” equality as proposed by Shannon is wholly dependent on two requirements. Firstly, that it must 
be possible, in principle at least to calculate the a priori message probabilities P(M), and secondly that it must be 
possible to determine the a posteriori message probabilities P(M|E).  However, the exception where P(M|E) > P(M) 
occurs, relates specifically to the situation where messages are expanded using random strings. 

In the context of a one-time pad or a Vigenere cipher using Ei=Mi+Ki(mod n) modular addition, or an XOR, the 
encryption of a message M with an equal length key K results in a ciphertext E of similar length. The interception of E 
by an assailant allows for the trivial calculation of P(M) since the message length is known. Likewise, the calculation of 
P(M|E) is also trivial given that the assailant can derive all K and M relationships given the ciphertext E. 

Theorem 1. (Exceeding Perfect Secrecy with Random Strings) Perfect secrecy requires P(M|E) to be exactly 
equal to P(M).  In the case where a known message M is expanded with a random string of any length, and 
encrypted with two pure ciphers such as a Vigenere and a transposition, the a posteriori message probabilities 
P(M|E) will be greater than P(M), breaching the “perfect secrecy” condition, yet be more secure than 
encrypting with a Vigenere alone (which is perfectly secret if the key is as long as the message) 

Proof: Consider the case where that same message M of length N is expanded with a random string R also of 
length N, and the concatenated string is subsequently super-encrypted with two encryption operations, 
namely a Vigenere and a transposition cipher each using a key of length N such that E=Tk2(Vk1(M+R)), and 
decryption entailing M=(Vk1

-1(Tk2
-1(E))) – R. In such a case, with a Vigenere and a transposition, it is not 

possible from the ciphertext to distinguish which letters belong to the message M or the random string R. 
With 2 possible sources for viable messages, namely M and R, the effective a priori message probabilities for 
M, namely P(M), are “polluted” by the additional message source R. In such a case, the a posteriori message 
probabilities of M, namely P(M|E), are augmented by P(R|E) such that P(M) < P(M|E) + P(R|E). Thus we have 
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the exceptional condition that whilst the Vigenere ensures “perfect secrecy”, and the transposition with 
independent key adds to the security of the cipher, making it more secure than the Vigenere alone, P(M) < 
P(M|E) + P(R|E), or alternatively, P(M) ≠ P(M,R|E), and thus it is not “perfectly secret”, yet stronger than if 
one simply used a Vigenere alone. 

We shall later see that “ideal secrecy” is applicable in all cases where P(M) ≠P(M|E), and P(M) ≠ 1. 

The exception mentioned above can be further enhanced, by segmenting the message M into random variable length 
segments M={M1||M2||M3,…,Mn-1||Mn} , and concatenating each segment with a random variable length random 
string, {M1||R1, M2||R2, M3||R3,…, Mn-1||Rn-1 ,Mn||Rn}, and then applying sequential Vigenere and transposition 
encryptions over each variable length concatenated {M||R} segment using equivalent length encryption operations. 
The required variables for message segment and random string lengths can be communicated in the random strings 
contained in previous segments. The resultant ciphertext can then be presented in a contiguous manner, hiding the 
exact extent or length of the encryption operations as shown below: 

Figure 
1: Random arrangement of message, random strings and encryption operations  

Thus, in such a case, upon the assailant intercepting a ciphertext E, the a priori message probabilities of M must be 
expanded to include all possible {M||R} segments, since it is not possible to derive the length of M or R from the 
ciphertext alone. In addition, since message segments may include only R with no M, with variable length encryptions, 
the assailant must therefore account for all possibilities of M, such that 0 ≤ P(M) ≤ P(M) *P(R). Under these 
circumstances, the calculation of P(M) which is necessary to determine “perfect secrecy” becomes problematic since it 
must cover all possible {M||R} segment possibilities (with regards to all possible variable length {M||R} segments 
which may be contained in the ciphertext, and the probable distribution of the values of the individual M and R 
components of each {M||R} segment).  With every character of the ciphertext, the number of possible variations in 
P(M) increases exponentially according to the following formula: 

=,2!"#
!

$%&

 

Thus, by the 128th ciphertext character, there are 6.8 x 1038 possible segment and content combinations, each having 
a distinct a priori set of probable messages P(M). In other words, there are more possible sets of distinct a priori 
message probability P(M), than there are distinct values in a 256-bit key. Thus, it is no longer possible, even in 
principle, to calculate the a priori message probabilities P(M), given E, because it is impossible to ascertain with 
certainty exactly which P(M) it is. In such a case, where all possible variations of P(M) can be calculated but it is 
impossible to discern exactly which P(M) is in play, how exactly does one ascertain whether “perfect secrecy” has 
been attained? 
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2.4. Equivocation	
Shannon defined “perfect secrecy” on the basis of the conditional probability of message P(M) and ciphertext P(E). 
Note that there is no mention of the probability of the key P(K), just that it must be truly random, or have entropy as 
large as log n, where n includes all possible variations of the key. 

Equivocation is essentially the application of Bayes Theorem to the message and the key entropy, with regards to a 
known ciphertext. More specifically, Shannon proposed equivocation (or conditional entropy) as a theoretical secrecy 
index, and highlighted two key equivocations, namely equivocation of message HE(M) and equivocation of key HE(K).  
Equivocation is a function of N, the number of ciphertext letters intercepted, and thus the quantity HE(N) determines 
in a statistical way how much intercepted material N is required to obtain a unique “solution” to the cryptogram 

From a practical perspective, equivocation allows for the determination of the a priori and a posteriori message and 
key probabilities, such that they may be plotted and visualised on a graph. 

Shannon’s paper provides the proof that in the case of a static key cryptosystem “perfect secrecy” requires a key as 
long as the message or more specifically, that following interception of the ciphertext, the a posteriori message 
probabilities derived by the assailant are exactly equal to the a priori message probabilities. In other words, since the 
assailant is unable to reduce the set of all possible messages prior to interception, the a priori message probabilities 
the act of cryptanalysis is largely pointless. 

Equivocation therefore allows for the calculation and determination of the rate at which an assailant may derive the 
valid set of message and key probabilities, given the amount of ciphertext that has been intercepted. 

In addition, Shannon stated that the entropy of a cryptosystem is limited to the key entropy. In dealing with finite 
length keys, Shannon demonstrated that the interception of additional ciphertext letters beyond the length of the key 
results in a reduction in the a posteriori message probabilities such that at some point (the unicity point), only a single 
viable decryption remains. 

The reduced a posteriori message and key probabilities may be calculated with regards to the intercepted ciphertext 
E, on the basis of the conditional entropy of message M or key K given the captured ciphertext.  
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2.5. Explaining	Equivocation	
With a set of possibilities with probabilities p1,p2,…pn, the amount of information or entropy information H for a 
probability space can be calculated using the formula  

H = - 𝛴 pi log pi . 

Thus, the entropy for the message M or key K can be calculated using the following formulas: 

H(M) = - 𝛴 p(M) log p(M) 

H(K) = - 𝛴 p(K) log p(K) 

The conditional entropy or equivocation of message HE(M) and key HE(K) , as proposed by Shannon, is therefore the 
conditional entropy of M and K given E and can be calculated using the following formulas: 

𝐻'(𝑀) =,(𝑃' (E, K) 𝑙𝑜𝑔 𝑃' (K)⬚)
(

',*

 

𝐻'(𝐾) =,(𝑃' (E, K) 𝑙𝑜𝑔 𝑃' (K)⬚)
(

',*

 

where M is the message, K is the key and E is the cryptogram. P(E,K) represents  the probability of K and E, and PE(K) is 
the a posteriori probability of K given E. Likewise, P(E,M) and PE(M) represent similar probabilities with regards to M. 

With regards to the properties of equivocation, Shannon demonstrated that the equivocation of key HE(K) is a non-
increasing function of N, where N is the number of intercepted ciphertext letters. 

However, we propose some additional properties of equivocation with regards to the fact that it can be increased, and 
that the equivocation of key does not decrease with random string messages. 

Theorem 3. (Equivocation of key can be increased Indefinitely) The equivocation of key is increased when 
key entropy is applied before encryption, and when additional independent key entropy is added to the 
existing key entropy before or after encryption. 

Proof: Prior to encryption, assume that there is an empty key space is known, K0 = {0,0,0,0} , and that H(K0) = 
1 and HE(K0) is equal to 0. The insertion of a key K1 into the known key space using modular addition (thus 
encrypting it), results in H(K1) = H(K0) +H(K1), thus HE(K1) is increased. Adding an additional independent key 
K2 results in H(K2) = H(K1) + H(K2) and again, HE(K2) is increased. In the case where the existing key space is 
used in encryption, HE(K) is reduced, but the entropy of the existing key will be augmented if the new key is 
encrypted with the old key using modular addition. There is no limit as to how many times the existing key 
space may be encrypted with new key entropy, or when it may be encrypted, each encryption with new key 
entropy will augment the entropy (and the equivocation) of the key space provided the new entropy is 
independent from the key space. The only limitation is that the entropy of the existing key space cannot be 
increased beyond the maximum entropy that it can accommodate, namely - 𝛴 p(K) log p(K). 

The encryption of a message having redundancy using a finite length key, will result in a decrease in the equivocation 
of key, and an increase and subsequent decrease in equivocation of message. Random string messages behave 
differently, since they ensure HE(K) = H(K), and thereby, HE(M) is increased whilst HE(K) remains constant. 
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Theorem 4. (Equivocation of key is not reduced with random string messages) The encryption of a random 
string does not result in a decrease in HE(K), irrespective of the length of the random string. 

Proof: From Shannon’s paper, we note that HE(K) = H(K) – DN, where D is the redundancy in the message and 
N is the number of intercepted ciphertext letters. Since D = 0 for a random string message, HE(K) = H(K) – 0N 
=H(K) 

In direct contrast to random strings having no redundancy, we have known plaintext messages having no information. 
The formula HE(K) = H(K) – DN offers an interesting solution to the problem of known plaintext attacks, in that there is 
a limit to the amount of key entropy HE(K)which can be reduced. The use of super encryption, or compound 
encryption using multiple encryption operations with multiple keys, allows the key entropy H(K) and thus the 
equivocation of key HE(K) to be augmented with each additional key, but the HE(K) can at most only be reduced by the 
redundancy in the message. 

Theorem 5. (Increasing the equivocation of key HE(K) is unlimited, decreasing is limited) The use of 
compound encryption with independent keys, allows for unlimited increases in the equivocation in key HE(K), 
with every independent encryption key, but HE(K) can only be reduced by the amount of redundancy D in the 
message. 

Proof: Like the above theorem, let us note that HE(K) = H(K) – DN, where D is the redundancy in the message 
and N is the number of intercepted ciphertext letters. Since HE(K) can be increased, in the case of multiple 
encryptions with multiple independent keys {K1,K2,…,Kn}, if H(K) = H(K1) + H(K2) + … + H(Kn), then given that 
HE(K) = H(K) – DN, we have  

HE(K) = (H(K1) + H(K2) + … + H(Kn)) – DN 

 alternatively, in the case of two encryptions 

HE(K1) = H(K1) – DN 

HE(K2) = H(K2) – 0N, since the first encryption has no redundancy, thus 

HE(K) = HE(K1) + HE(K2). 

Following the first Vigenere encryption with key K1, HE(M) will increase and HE(K) = HE(K1) will decrease such 
that at length N, HE(M) = HE(K). Applying a second Vigenere encryption using an independent key K2,  as long 
as the encryption space, will result in the effective equivocation of the key becoming  HE(K) = HE(K1) + HE(K2). 

Thus, we can demonstrate with an experiment, that in the case of where a known plaintext is encrypted 
twice with two Vigenere or any combination of pure ciphers with independent keys as long as the message, 
the assailant gains no advantage in information beyond the entropy of the message H(M) which is equal to 
the entropy of the key H(K). 
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2.6. Ideal	Secrecy	
Whilst perfect secrecy can only be attained when P(E|M) =P(M), and P(M|E) = P(E), or alternatively where the 
equivocation of key HE(K) is exactly equal to the equivocation of message HE(M). Ideal secrecy covers all eventualities 
where they are not equal. Shannon’s treatment of ideal secrecy cryptosystems was unfortunately limited to scenarios 
where perfect and pure systems were used, keys were of finite length shorter than the message, requiring a repetition 
of the key, and this has led to a common misunderstanding that ideal secrecy systems are somehow inferior to perfect 
secret systems. However, since we have established that perfect secrecy can be exceeded, we submit that the term 
“ideal secrecy” is equally applicable to all cases where the a priori message probabilities are not exactly equal to the a 
posteriori message probabilities and have not been reduced to a single valid decryption. 

 

2.7. Ideal	Secrecy	–	Definition	
For “ideal secrecy”, Shannon’s definition is as follows: 

Definition 2. (Ideal Secrecy) “With a finite key size, the equivocation of key and message generally 
approaches zero, but not necessarily so. In fact, it is possible for HE(K) to remain constant at its initial value 
H(K). Then, no matter how much material is intercepted, there is not a unique solution but many of 
comparable probability. We will define an “ideal” system as one in which HE(K) and HE(M) do not approach 
zero as N →¥. A “strongly ideal” system is one in which HE(K) remains constant at H(K).” (Shannon’s 
Definition). 

In plain English - A security characteristic of a cryptosystem, where irrespective of the amount of cryptanalysis 
effort applied by an assailant on an intercepted ciphertext, only some of the possible messages which may 
have been encrypted into the ciphertext using a secret key and an encryption transformation, appear as 
possible decipherments of that ciphertext. 

Message redundancy is of great importance to cryptanalysts and the determination of “ideal secrecy” in particular. 
Every natural language has an inherent statistically valid structure with regards to letter, word and sentence 
arrangements, such that certain combinations of letters and words do not constitute valid representations of the 
natural language. For a given message length, the proportion of valid to invalid possible messages can be represented 
as the proportion of average information to average redundancy for that language. For normal English, the average 
proportion of information to redundancy in each 8-bit character is about 1.3 bits information to 6.7 bits redundancy 
(16% info, 84% redundancy). 

The above equation therefore specifies the amount of ciphertext required to successfully execute a brute-force attack 
on the key or the message. With ordinary English (having about 84% redundancy – 6.7 bits of every 8 bits) and using a 
256-bit key (32 bytes or characters), the unicity distance is 32/0.84 = 38.09 bytes. Thus, any message having less than 
38 characters will have “ideal secrecy” and be secure.  

When a finite key (shorter than the message) is used with a cryptosystem, and N letters of the cryptogram are 
intercepted, the assailant will be in principle, able to determine the probabilities of the various viable messages which 
may be contained within the ciphertext. When N increases, the number of possible viable messages will decrease until 
there is a single uniquely valid message for the cryptogram. As mentioned previously, equivocation is the quantity 
HE(N) which determines in a statistical way how much intercepted material is required to obtain a unique “solution” to 
the cryptogram. With random ciphers having keys with H(K) entropy, the point which indicates the amount of 
ciphertext required to produce a unique result is called the “unicity point”, or “unicity distance” and for most 
symmetric cryptosystems is calculated as: 
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𝑈𝑛𝑖𝑐𝑖𝑡𝑦	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐻(𝐾)
𝐷  

Where: 

• H(K) = log2 (K) - the entropy of the key is the base 2 logarithm of the number of possible keys. A cryptosystem 
with a 64-bit key therefore has 64 bits of entropy. 

• D = the redundancy of the language of the message. 

Therefore, the amount of redundancy in a message is of great importance when determining whether a cryptosystem 
has attained ideal secrecy. The greater the redundancy, the greater the reduction in the equivocation of key HE(K). 
However, Shannon’s treatment of ideal secrecy was limited to instances where the redundancy of a message was 
reduced through compression. 

Shannon noted that if a language consists of a sequence of letters all chosen independently and with equal 
probabilities, then the redundancy is zero, and we have a strongly ideal system with HE(K) = H(K). Inadvertently, this 
includes ransom string messages. 

Theorem 6. (Random Strings reduce overall message redundancy) The redundancy of messages may be 
decreased, when messages are combined with a random string and a transposition is applied over the 
combined string. 

Proof: Assume that the message and the random string have the same language and therefore the same 
absolute language rate R, where:  

R = log2 L,  

where L is the number of characters in the language. The amount of information (or entropy) in the message 
and the random string is combined when H(M) and H(R) are concatenated. The application of a 
transformation over the combined set results in  

H(M,R) = H(M) + H(R), 

dissipating the redundancy of the message over the entire message space. 

Irrespectively, perfect secrecy and ideal secrecy systems have one characteristic in common – they prevent an 
assailant from effectively elimination all a posteriori message probabilities. 

The presence of any known plaintext, such as standard document headers or standard transmission headers, reduces 
the effective H(K) key entropy and thus the unicity distance.  

However, in the same way that predictable known plaintext effectively reduces the unicity distance calculation, 
random strings are capable of increasing the unicity distance, or in special cases even resetting the “unicity distance” 
calculation completely. 
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2.8. Perpetual	Equivocation	
Thus, from Shannon’s perspective, perfect secrecy requires an infinite amount of key in order to encrypt an infinite 
number and length of messages. With keys of finite length, the equivocation of messages and keys will in general 
approach zero at the unicity point, where there will be a unique solution. An “ideal secrecy “system is therefore one in 
which the HE(K) and HE(M) do not approach zero as N tends to infinity. In other words, any secrecy system where the 
ciphertext is shorter than the unicity distance is “ideally secret”. 

In addition, he defined “strongly ideal secrecy” when HE(K) remains constant at H(K). Unfortunately, Shannon did not 
consider the prospect of entropy augmentation, namely where HE(K) may be increased or augmented, since he limited 
himself to static key systems and there is therefore a limit to the amount of entropy that a finite length key space may 
hold, never above its maximum, HE(K). 

Using the theorems mentioned above, we will now demonstrate that it is possible to continuously augment the 
entropy in a cryptosystem, such that HE(K) and HE(M) never approach zero, using random strings and multiple 
encryptions. Thus, with every augmentation in system entropy, the unicity distance calculation is restarted, and 
therefore the unicity distance is moved further towards infinity, always being longer than the ciphertext. 

If the entropy of the cryptosystem can be augmented after every use of the key space in an encryption, and the key 
space can be increased in length to accommodate the additional entropy, then every encryption operation effectively 
entails a “perfectly secret” encryption. Under these conditions, we have the exception, that “perfect secrecy” can be 
exceeded using a finite length key. 

2.8.1. The	Underlying	Concepts	
There are three underlying principles to perpetual equivocation: 

1. With a one-time pad, there are two required communication channels, one for key distribution and one for 
encryption. There is the possibility that both channels may be combined with every encryption, such that the 
entropy required for the next encryption may be transmitted with the encrypted message. 

2. Whilst Shannon stated that “perfect secrecy” requires an infinite length key for an infinite number of 
messages, there is the possibility that a finite length key may be used to encrypt an infinite length key which 
is used to encrypt the messages. 

3. The intuitive concept of inflight refuelling, explains how an aircraft may be theoretically allowed to maintain 
infinite flight, never landing, without requiring an infinitely large fuel tank. An infinite amount of fuel is 
required however. 

With Perpetual Equivocation, we apply all three concepts to cryptography. If entropy can be perpetually transmitted 
and injected into a cryptosystem, then “perfect secrecy” can be attained with a finite length key, and “ideal secrecy” 
can be attained, irrespective of the amount of ciphertext. 

2.8.2. The	Mechanics	of	Perpetual	Equivocation	
We will demonstrate the benefit of perpetual equivocation using a comparative example. 

Without Perpetual Equivocation. Let us assume we have a 16-byte message in English, with redundancy D of 0.84 
(84%), and a key K of finite length of 10 bytes with 280 possible values and H(K) = 80. Using a Vigenere modular 
addition encryption, and using Shannon’s unicity distance calculation for a random cipher, the unicity distance for the 
encryption is calculated as follows:  

𝐻(𝐾)
𝐷 = +

80
0.84 = 95.23	𝑏𝑖𝑡𝑠 = 11.90	𝑏𝑦𝑡𝑒𝑠 
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Since the length of the message is 16 bytes, and the key is 10 bytes, we do not have “perfect secrecy”. Since the 
ciphertext (16 bytes) will be longer than the unicity distance, “ideal secrecy” is also not attained. We do not have any 
information theoretical security. 

With Perpetual Equivocation. In addition to the elements of the example above, we will require the following: 

(1) a random string R as long as the message, of 16 bytes. 
(2) An additional encryption operation (transposition) after the main Vigenere. 

We will first split the 10-byte key K into 3 keys, namely K={K1||K2||K3}, with K1 having 2 bytes, and K2 and K3 having 4 
bytes each.  A graphic depiction of perpetual on equivocation is shown below. 

 

Figure 1. The Equivocation graph for Perpetual Equivocation 

The explanation for Perpetual Equivocation is as follows: 

1. At point A, we encrypt the first 2 random bytes R1 and R2 from the 16-byte random string R, using a Vigenere 
or XOR, with the K1.  This results in a “strongly ideal secrecy” encryption of R1 and R2 into ER1 and ER2, since 
they have no redundancy. We will then append ER1 and ER2 to the first 2 bytes of the message M1 and M2 
such that the message segment MA to be encrypted is MA= {M1||M2||ER1||ER2}. 

2. At point B, before encryption and before applying message and key K2, HE(K2) and HE(MA) are equal to zero.  
3. At point C, applying K2, increases HE(K2) to 232. The message segment MA is then firstly encrypted with K2, 

resulting in the increase of the message equivocation following the slope HE(MA), and the equivocation of key 
following the slope HE(K2). HE(MA) first follows the slope HE(M1+M2) for M1 and M2 , out to point D, then 
follows the slope HE(ER1+ER2)since ER1and ER2 out to point E. At point E, HE(K2) = HE(MA) and we have perfect 
secrecy following the first XOR encryption. Note that the amalgamation of HE(M1+M2) and HE(ER1+ER2) into 
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HE(MA), requires some mixing to occur over the entire MA. This is the purpose of the transposition cipher 
which is used next. 

4. Point F indicates the addition of K3 for the transposition encryption over period d, d being equal to 4. Since 
the second encryption following an XOR has no information loss, the overall equivocation of key HE(K2) is 
increased by HE(K3), raising the effective equivocation for the entire cipher to the value shown at point G. 

5. Point H is where the “magic” happens. Since R1 and R2 have already suffered the indignity of an encryption 
prior to being added to MA, their entropy can be added directly to the current key equivocation at G, namely 
HE(K2) + HE(K3) can be augmented by H(R1+R2). Entropy augmentation occurs with a mixing of the entropy, not 
a replacement. This may be done by encrypting the existing K2 and K3 with R1and R2. 

6. Thus, we have the result, that the equivocation of K2 and K3 has been increased, replenishing their entropy to 
the state prior to the encryption operations, with entropy to spare. 

7. In addition, the “perfectly secret” first encryption has the additional secrecy of a transposition; thus we have 
exceeded perfect secrecy. 

8. The activity can be then conducted ad nauseum, thus the conclusion that “perfect secrecy” can be exceeded 
using a finite length key, irrespective of the length of the message. We also have the condition that “ideal 
secrecy” is guaranteed. 

Further observations - the amount of entropy enhancement is increased with additional random string material, but 
the information theoretic secrecy attained above can be attained with at most 100 percent increase in message size. 
The benefit of the operation is increased with a decrease in message redundancy. Thus, better results can be obtained 
if the message is compressed prior to encryption. 

It should be relatively obvious, that the use of static keys, whilst viable, does make it difficult with regards to the 
encryption of the existing keys with the new key entropy. In order to benefit from the additional entropy, a larger 
entropy pool is required, such as with a stateful PRNG. In such a case, the augmentation process merely requires the 
encryption of the current internal state of the PRNG with the new entropy. 

 	



       

© 2024 - Helder Figueira, Steve Weston, Ian Leitch, Incrypteon 

3. SUMMARY	OF	THE	INCRYPTEON	CIPHER	
In this section, we discuss the Incrypteon Cipher from a conceptual perspective, in order to demonstrate that the 
Perpetual Equivocation principle is practically possible. The complete technical specification for the Incrypteon cipher 
will be covered in a subsequent paper.  

The Incrypteon stream cipher is an extensible, fast, modular, software-based, dynamic super-stream cipher and has 
been purposefully designed with information-theoretic security considerations in mind.  Whilst composed of simple 
cryptographic modules, the Incrypteon Cipher is complex in its execution, effectively being dynamically polymorphic. 
By this we mean that every encryption operation is unique, since the state of the PE instance is randomly altered 
multiple times during each communication session. 

Uniquely, given the same static key K and message M, every encryption of that message will result in a unique and 
different ciphertext C.  

From a performance perspective, the Incrypteon Cipher has demonstrated encryption and decryption speeds using a 
single thread, and a single 2.8 GHZ core of a quad core system, of 40 Mbit/sec, using 12% random entropy overhead 
on a 65MB video file. This is on an unoptimized software implementation running 8-bit values in a 64-bit system. 

The following is a basic conceptual diagram of the Incrypteon Cipher. 

 

Figure 1. Incrypteon Cipher – Conceptual Design. 

From the diagram above, we see that the Incrypteon Cipher is composed of a number of simple components in a 
complex arrangement, namely:  

• A key K (1) – used to initialise the state of the internal RNG2 and is also used to encrypt the entropy stream 
(the OTP pad) before transmission. Key can be of any size. 

• A message M (2) – kept independent from the encrypted entropy keystream. 
• An unsynchronised external random number generator - RNG1 (3) – (of specific design) a stateful random 

number generator serves as the source of the perpetual truly random entropy key stream (the OTP pad, and 
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therefore the “actual” key to the system). The RNG is composed of an internal array of variable length 
(normally 256 bytes upwards) with random elements. Elements are usually 8-bit, but any bit-length is 
supported. It’s future proof, and will support 128-bit elements and above when the technology becomes 
available. The RNG is unique, in that its internal state and variable values can be dynamically and randomly 
altered between encryption operations. This allows for the random alteration of the deterministic number 
generation process – making true random number generation using a mathematical PRNG possible. 

• A synchronised PE RNG Instance - RNG2 (4) – (of specific design) provides the truly random encryption 
keystreams for the encryption buffer. Of similar construction to RNG1. With RNG2, we allow for the 
production of multiple keystreams, for multiple encryption operations and to secure message authentication 
processes. 

• A minor Key Encryption Operation (5) - the entropy stream is encrypted with the key K before transmission 
to the receiver, producing a brute-force resistant “ideal secrecy” encrypted entropy cipher-stream and a new 
K with every encryption. This operation may be further augmented with an initialisation vector, or an 
asymmetric authentication solution. In such a case the asymmetric encryption would operate in a “protected 
and secured” area.  

• A minor Message Encoding Operation (6) – all messages are pre-processed before final encryption and 
transmission, allowing various cryptanalytic countermeasures to be deployed. May include message re-
encoding, message reconstruction, redundancy alteration, and message randomisation procedures. The 
Encoding Process aims to increase the rate of “false positives” already provided by the main encryption 
process, in that every random decryption has an increased probability of producing a viable message.  

• A main Random Superencryption Process (7) - where 3 separate and simple encryption operations are 
applied to an Encryption Buffer of random and variable composition (containing the Encoded Message 
Stream, and the Encrypted Entropy Stream). This prevents attacks against the keystreams and internal state 
of RNG2. It also ensures that there are no message/key/ciphertext pairs to speak of, providing message 
indistinguishability. The block size and composition of the encryption buffer is changed with every separate 
encryption using the random OTP entropy stream. 

• A Random Feedback Process - To ensure that RNG1 produces a truly random keystream, a feedback 
operation is used. This ensures that RNG1 never encounters an entropy depletion problem. 

Decryption entails using a remote synchronised RNG2, to remove the super-encryption process, revealing the Encoded 
Message Stream and Encrypted Keystream. Completion of the Decoding operation presents the message, on 
completion of the simple key decryption process RNG2 is updated in synchronicity for the next encryption operation.  

The Incrypteon Cipher was developed as a solution to the problems which prevented a one-time pad (OTP) from being 
practically possible. In essence, it allows for the “OTP pad” and the messages to be sent as a combined operation. 
Ordinarily, the OTP static key encryption mechanics are too restrictive to allow for a practical info-theoretic security 
solution. The use of an RNG allows for an interim dynamic “entropy” repository, making simultaneous pad/message 
delivery possible. The OTP pad is therefore used to alter the RNG output (the true one-time pad). So “perfect secrecy” 
is attained indirectly. Indeed, controlling the amount of random entropy added to the message allows for the security 
of the system to be increased or decreased on demand. 

The Incrypteon Cipher is a stochastic encryption delivery apparatus for messages and entropy augmentations, with 
info-theoretic security characteristics. This comes at a price, but message expansion by at most 100% is a relatively 
cheap price by any standards. Since the cipher security level can be determined by the user, this price only needs to 
be paid when the highest levels of security are required. From an attacker’s perspective, there is no way to know what 
amount of expansion has been used, so any amount (including over 100%) must be assumed and considered when 
calculating probabilities of messages.  
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Implementation Advantages. The Incrypteon Cipher is the first practical information-theoretically secure symmetric 
encryption stream cipher and is suitable for ultra-secure implementations. It is extensively configurable in terms of 
encryption operations and is suitable for all forms of encryption – encryption at rest and encryption in transit. The 
cipher can be initialised with any length of key, and its memory footprint can be configured to fit within a specific 
implementation requirement. With superior random number generation capabilities, it can be used to provide truly 
random numbers to other cryptosystems. It is suitable for modern super-scalar processors and allows for a high 
degree of parallelism. The cipher is also relatively fast, with encryption/decryption speeds of 40 Mb/s using a single 
thread, no parallelism and running with an inferior configuration of 8-bit elements on a 64-bit processor. Note, this is 
a worst-case scenario. 

Security Advantages. The Incrypteon Cipher offers unprecedented levels of information theoretic security, and is 
therefore suitable for military, government, finance and strategic infrastructure implementations. We demonstrate 
that “perfect secrecy” is a limit and can be exceeded. We have thus had to define a new characteristic of information 
theoretic security, namely “perfectly ideal secrecy”. The cipher therefore easily attains security as defined by the 
lesser or reduced notions of security, such as semantic security, message indistinguishability, and “indistinguishability 
from random” as far as stream cipher keystreams are concerned. With regards to message indistinguishability, in the 
case of the Incrypteon Cipher, an identical key and message will in the greatest of probability always result in a 
completely different ciphertext if the action is repeated. There are no plaintext/key/ciphertext triplets to speak of. 
This automatically qualifies the Incrypteon Cipher as a semantically secure cryptosystem. Since the stream cipher 
keystreams are randomly altered, the deterministic number sequence outputs become probabilistic, evading a 
number of number generation issues such as periodicity, and we therefore easily satisfy the “indistinguishability from 
random requirement” with regards to keystreams. The Incrypteon Cipher is immune to most forms of cryptanalysis - 
brute-force, linear/differential cryptanalysis, known plaintext, man-in-the-middle, replay attacks, message alteration. 
It is one of very few systems able to transmit a null pad without compromising the key. 
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4. CONCLUSION	
In this paper, we demonstrated the Perpetual Equivocation method as a means of overcoming a 70-year-old 
cryptographic rule, that “perfect secrecy” cannot be attained with a finite length key. Our analysis indicates that it is 
not only possible to attain “perfect secrecy”, but to exceed it, provided we step out of the confines of static simple 
encryption systems with single keys, messages and operations, into the domain of dynamic complex encryption 
systems with multiple keys, messages and encryption operations. There is a world of cryptographic complexity to be 
explored. 

But stepping back from the overall solution at this stage, it seems that we may have a solution to the One-Time Pad’s 
problems, allowing for a practical implementation of an “augmented” OTP solution. Thus, it seems that it is possible to 
have truly random keys, no key storage issues, just in time distribution, secure key destruction, and a means of 
generating keys at a faster rate than the message.  

Statement: Please note that the Perpetual Equivocation/Encryption method, the Incrypteon Cipher and similar 
variants are covered by patent. 
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6. APPENDIX	A:	INFORMATION	THEORY	BASICS	
The smallest unit of information in a digital system is the “bit”. The amount of information in a message is the 
minimum number of bits needed to communicate all possible meanings of the message. For example, denoting the 
day of the week (7 possible meanings) requires 3 bits. The amount of information, assuming all messages are equally 
likely, is measured by the entropy of the message, denoted by  

H(M) = log2 n 

where “n” is the number of possible meanings. The rate of a language is denoted by 

r = H(M)/N 

where “N” is the length of the message and denotes the average entropy of a message in a specific language. For 
normal English, the rate varies between 2.3 bits and 1.3 bits per letter, depending on the number of letters. For our 
purposes, we will assume 1.3 bits as a conservative estimate. The absolute rate of a language is the maximum 
entropy of the individual characters in a language, and denoted by  

R = log2 L 

where “L” is the number of characters in a language. The absolute rate of basic English is log2 (26), about 4.7 bits per 
letter. The absolute rate of HTML English (text only), assuming 82 characters (10 lower case alphabet, 10 upper case, 
10 numeric, 10 formatting and 10 punctuation) is log2 (82), or 6.35 bits per character. The absolute rate for the 
Unicode UTF-8-character set with 256 characters is log2 (256), or 8 bits per character, or octet (byte).  

The redundancy of a language (D) can be measured using  

D = R – r 

where “R” is the absolute rate and “r” the normal rate of a language. English is highly redundant and if encoded using 
the Unicode UTF-8-character set has 8.0 – 1.3 = 6.7 bits of redundancy for every character. Redundancy is of cardinal 
importance in cryptanalysis.   

In the case of an HTML English message sent using Unicode UTF-8 (256-character set) for every character having 8 
available bits, there are 6.7 bits of redundancy: 

- 1.3 bits – Assumed rate of English. 
- 5.05 bits – redundancy due to absolute rate of HTML character set. 
- 1.65 bits – additional redundancy due to absolute rate of Unicode UTF-8-character set. 

Therefore, in the above case, every HTML English message will on probabilities be assumed to contain 16% of 
information, and 84% of redundancy. Every bit may therefore be assumed to contain 0.16 bits of information and 0.84 
bits of redundancy. 

The entropy (unpredictability) of a cryptosystem is directly associated with the size of the keyspace, in that  

H(K) = log2 K 

where “K” is the length of the keyspace in bits. In general but not strictly correct, the greater the entropy, the stronger 
the security solution.  
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Cryptanalysts regularly use two equations to verify the viability of a brute-force attempt on a ciphertext. The first 
formula  

2H(K) – nD -1 

denotes the number of different keys which will decipher a ciphertext of length “n” into a valid and “probable” 
message, where H(K) denotes the entropy of the cryptosystem, “D” the redundancy and “-1” to account for the case 
where the ciphertext is the message.  

The other equation relates to the unicity distance “U” calculation as described above and defined by Shannon to be  

U = H(K)/D 

where H(K) is the entropy of the cryptosystem (key size) and D is the redundancy of the message. U is a probabilistic 
measurement and denotes the minimum amount of ciphertext in bits required for a brute force attempt of the key to 
result in a single unique and valid decryption.  

 

 

 

 

 

 


